
THE LIFE-CYCLE OF AN EXCEPTION 32

Dynamic rescue clauses

rescue clauses are similar in appearance and operation to another Ruby
construct: the case statement. Just as with a case clause, you can supply a
class or list of classes to be matched, followed by the code to be executed
in case of a match.

case
case obj
when Numeric, String, NilClass, FalseClass, TrueClass

puts "scalar"
5 # ...

end

rescue
rescue SystemCallError, IOError, SignalException

10 # handle exception...
end

Listing 10: Comparing case and rescue.

rescue clauses share something else in common with case statements: the
list of classes or modules to be matched doesn’t have to be fixed. Here’s an
example of a method that suppresses all exceptions that match a given list
of types. The list is “splatted” with the * operator before being passed to
rescue:

32

THE LIFE-CYCLE OF AN EXCEPTION 33

def ignore_exceptions(*exceptions)
yield

rescue *exceptions => e
puts "IGNORED: ’#{e}’"

5 end

puts "Doing risky operation"
ignore_exceptions(IOError, SystemCallError) do

open("NONEXISTENT_FILE")
10 end

puts "Carrying on..."

Output
Doing risky operation
IGNORED: ’No such file or directory - NONEXISTENT_FILE’
Carrying on...

Listing 11: Dynamic exception lists for rescue.

But that’s not the end of the resemblance. As you may know, case works by
calling the “threequals” (===) operator on each potential match. rescue
works exactly the same way, but with an extra, somewhat arbitrary limita-
tion:

define a custom matcher that matches classes starting with "A"
starts_with_a = Object.new
def starts_with_a.===(e)

/^A/ =~ e.name
5 end

begin
raise ArgumentError, "Bad argument"

rescue starts_with_a => e
10 puts "#{e} starts with a; ignored"

end

Output
#<TypeError: class or module required for rescue clause>

Listing 12: Limitations on exception matchers.

The sole difference between casematching semantics and rescuematching
semantics is that the arguments to rescue must all be classes or modules.

33

THE LIFE-CYCLE OF AN EXCEPTION 34

But so long as we satisfy that requirement, we can define the match con-
ditions to be anything we want. Here’s an example that matches on the
exception message using a regular expression:

def errors_with_message(pattern)
Generate an anonymous "matcher module" with a custom threequals
m = Module.new
(class << m; self; end).instance_eval do

5 define_method(:===) do |e|
pattern === e.message

end
end
m

10 end

puts "About to raise"
begin

raise "Timeout while reading from socket"
15 rescue errors_with_message(/socket/)

puts "Ignoring socket error"
end
puts "Continuing..."

Output
About to raise
Ignoring socket error
Continuing...

Listing 13: A custom exception matcher.

We can generalize that to create exception matchers based on an arbitrary
block predicate:

34

THE LIFE-CYCLE OF AN EXCEPTION 35

def errors_matching(&block)
m = Module.new
(class << m; self; end).instance_eval do

define_method(:===, &block)
5 end

m
end

class RetryableError < StandardError
10 attr_reader :num_tries

def initialize(message, num_tries)
@num_tries = num_tries
super("#{message} (##{num_tries})")

end
15 end

puts "About to raise"
begin

raise RetryableError.new("Connection timeout", 2)
20 rescue errors_matching{|e| e.num_tries < 3} => e

puts "Ignoring #{e.message}"
end
puts "Continuing..."

Output
About to raise
Ignoring Connection timeout (#2)
Continuing...

Listing 14: An exception matcher generator.

The rescue clause is powerful, and surprisingly dynamic. With dynamic
type lists and custom matchers, you can be as specific as you need to be in
matching exceptions to handlers.

rescue as a statement modifier

There is one final way to use rescue. In the same way that you can ap-
pend an if or unless modifier to a Ruby statement, you can also append a
rescue. A somewhat infamous example is the rescue nil modifier, which
is sometimes used to ignore failures:

f = open("nonesuch.txt") rescue nil

35

